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ABSTRACT

Recognizing pedestrian attributes, such as gender, backpack,
and cloth types, has obtained increasing attention recently due
to its great potential in intelligent video surveillance. Exist-
ing methods usually solve it with end-to-end multi-label deep
neural networks, while the structure knowledge of pedestrian
body has been little utilized. Considering that attributes have
strong spatial correlations with human structures, e.g. glass-
es are around the head, in this paper, we introduce pedestrian
body structure into this task and propose a Pose Guided Deep
Model (PGDM) to improve attribute recognition. The PGDM
consists of three main components: 1) coarse pose estimation
which distillates the pose knowledge from a pre-trained pose
estimation model, 2) body parts localization which adaptive-
ly locates informative image regions with only image-level
supervision, 3) multiple features fusion which combines the
part-based features for attribute recognition. In the inference
stage, we fuse the part-based PGDM results with global body
based results for final attribute prediction and the performance
can be consistently improved. Compared with state-of-the-art
models, the performances on three large-scale pedestrian at-
tribute datasets, i.e., PETA, RAP, and PA-100K, demonstrate
the effectiveness of the proposed method.

Index Terms— Pedestrian attribute recognition, intelli-
gent video surveillance, person retrieval, pose estimation

1. INTRODUCTION

Recognition of pedestrian attributes, e.g. gender, backpack,
cloth types shown in Fig. 1, has obtained increasing attention
recently due to its great potential in real applications, such
as person re-identification and attribute-based person retrieval
in intelligent video surveillance. For example, describable
person attributes can play a critical role for the search of the
two suspects in Boston marathon bombing event [1]. Despite
of years of efforts, there still are many challenges, such as
pose variation, illumination variation, camera viewing angle,
and the low-quality image due to far distance cameras.

Existing methods for pedestrian attribute recognition typ-
ically consist of two stages, i.e. feature representation and
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Fig. 1. Examples of pedestrian attributes in real scenarios.

attribute classifiers design. In the past, researchers usually
adopt hand-crafted features, e.g. Ensemble of Local Features
(ELF) [2], then learn classifiers for each attribute separate-
ly [3]. Recently, deep learning, especially Deep Convolution-
al Neural Networks (DCNN), has made great progress on gen-
eral object recognition [4, 5]. Inspired by this, researchers in-
troduce the DCNN into pedestrian attribute recognition [6–8].
They treat it as an end-to-end multi-label classification task
and achieve considerable improvements compared with pre-
vious two-stage based methods. Thus, we also utilize DCNN
to solve pedestrian attribute recognition task.

Typically, pedestrian attributes own strong spatial rela-
tionships with human body parts. For example, hair types are
around the head. Shoe types can be determined by the region
of foot. Existing methods typically explore simple rigid struc-
ture by slicing the human image into multiple rigid strides or
blocks [8, 9]. However, those rigid partitions cannot well de-
pict the pedestrian pose variation, and also partially damage
the attribute structure, e.g. breaking the Tshirt into two parts.
Differently, in this paper, we explore the human body struc-
ture, i.e. pedestrian pose, for pedestrian attribute recognition.

To utilize the pedestrian pose for attribute recognition, we
should solve two basic problems. The first one is human
pose estimation. To our knowledge, there are no pose an-
notations in existing pedestrian attribute datasets. Besides,
re-annotating human poses on existing pedestrian attribute
datasets is also a hard and costly project. The second one
is how to apply the pose knowledge to attribute recognition.
Common pose estimation can only produce human key points,
and attributes are typically corresponded with regions. How
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to build the relationships between points and regions is still a
problem. In this paper, we propose a Pose Guided Deep Mod-
el (PGDM) to jointly solve both the problems. For the first
problem, considering that there are already some good pose
estimation models [10], instead of re-annotation, the PGDM
transfers those pose knowledge from existing pose estima-
tion models to pedestrian attribute datasets. For the second
problem, based on the prior key points, the PGDM discover-
s a suitable part region around each key point, and then en-
sembles all key point related regions for pedestrian attribute
recognition. To be noticed, the pose knowledge distillation
and region localization in PGDM are optimized jointly.

In the inference stage, the PGDM first estimates the hu-
man key points and generates the part regions simultaneous-
ly, then ensembles these region-based feature representations
for pose-guided pedestrian attribute recognition. In addition
to the region-based predictions produced by PGDM, we also
obtain the global body-based predictions and fuse these two
results at score level as the final prediction. In summary, the
contributions of this paper include:

• To our knowledge, this is the first attempt to explore the
deformable pedestrian body structure knowledge, e.g.
pose information, for pedestrian attribute recognition.

• A pose guided deep model is proposed, which could not
only transfer the pose knowledge from existing pose es-
timation model to surveillance scenarios, but also adap-
tively locate informative regions for the high-level at-
tribute recognition task.

• The proposed method has obtained competitive results
in three large-scale pedestrian attribute datasets.

2. RELATED WORK

Early works typically adopt classical hand-crafted features
and train multiple binary classifiers for each attribute inde-
pendently. Layne et al. [3] first propose to train Support
Vector Machines (SVM) classifiers to recognize human at-
tributes and utilize the recognition results to assist person re-
identification based on ELF features. Zhu et al. [11] utilize
Gentle AdaBoost algorithms with multiple features, e.g. col-
or feature, HOG feature, to jointly make feature selection and
attribute classification. Deng et al. [12] introduce the inter-
section kernel SVM for attribute recognition and use Markov
Random Field (MRF) as post processing.

Recently many researchers utilize deep learning to solve
pedestrian attribute recognition due to its great power in fea-
ture learning, which may better handle the complex variations
in surveillance scenes. Li et al. [6] treat pedestrian attribute
recognition as a multi-label classification problem and pro-
pose an improved entropy loss to handle unbalance label dis-
tribution. Sudowe et al. [13] propose the Attribute Convolu-
tional Net (ACN) to jointly learn different attributes through
a jointly-trained holistic CNN model. Zhou et al. [14] utilize
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Fig. 2. Overall framework. (Top) The Main Net learns one in-
dependent classifier for each attribute and the output of ‘Con-
v4’ layer are used for PGDM. (Bottom) The PGDM first re-
gresses 6 transformer parameters (including 2 pose key point
position) for each region, then learn representation for each
region produced by spatial transformer network, and last-
ly ensemble 14 regions’ representation for region-based at-
tribute recognition. Max pooling layers after the last con-
volutional layers in the Main Net and regression network of
PGDM are omitted. Best viewed in color.

spatial pyramid pooling to jointly handle attribute recognition
and localization.

In addition to these straightforward methods, some re-
searchers also explore human prior structure to assist pedes-
trian attribute recognition. Zhu et al. [9] first divide human
body into 15 rigid parts and train a CNN model for each part,
then use prior fully connected layer to fuse multiple parts for
attribute recognition. Sarfraz et al. [15] utilize human view
angle to assist the recognition of pedestrian attributes. Yao
et al. [16] develop an adaptive region localization method for
attribute recognition. Wang et al. [8] explore pedestrian rigid
strides to capture spatial information for attribute recognition.
Liu et al. [7] utilize multiple attention models to simulta-
neously learn multi-level feature representation for attribute
recognition. Different from those methods, in this paper, we
explore the pedestrian deformable body structure knowledge,
i.e. human pose, to improve pedestrian attribute recognition.

3. PROPOSED METHOD

In this paper, we propose a deep convolutional neural network
for pedestrian attribute recognition, which adaptively learns
informative regions through exploring pedestrian body struc-
ture knowledge. The overall framework is shown in Fig. 2,
which consists of two components, Main Net and Pose Guid-
ed Deep Model. The details about these two components are
described as follow.

3.1. Main Net

The Main Net follows the structure of CaffeNet, which has
little modification of AlexNet [4], and the basic structure is
shown on Fig. 2. For the Main Net, we treat the pedestrian at-
tribute recognition as a multi-label classification problem, and



use improved cross entropy loss [6] as our objective function,
which could partially handle the unbalanced label distribu-
tion in different attribute categories. Considering there are
L attributes and N images, the optimization objective can be
formalized as follows:

Lm = − 1
NL

N∑
i=1

L∑
l=1

wl(yillog(ŷil) + (1− yil)log(1− ŷil))

(1)

wl =

{
exp((1− pl)/σ2) yil = 1

exp(pl/σ
2) yil = 0

(2)

where yil is the ground truth of l-th attribute of i-th sample,
pil is the corresponding prediction probability, wl is the loss
weight for l-th attribute, pl is the positive ratio of l-th attribute
in the training set, and σ is a temperature coefficient which is
set as 1 in this paper.

3.2. Pose Guided Deep Model

The Pose Guided Deep Model (PGDM) aims to explore the
deformable body structure knowledge, i.e. human pose, to as-
sist pedestrian attribute recognition. It consists of three main
components, including coarse pose estimation, adaptively re-
gion localization and region-based feature ensemble for at-
tribute recognition.

Coarse Pose Estimation: To our knowledge, there are
no human pose annotations in existing pedestrian attribute
datasets. Re-annotating pose information on existing attribute
datasets is another challenging problem, which is costly and
hard due to the low image quality. Due to the deep learning
technologies and large-scale person pose datasets, e.g. MPI-
I [17] and Leeds Sports Pose (LSP) [18], there are already
some good deep pose estimation models, e.g. Convolutional
Pose Machines (CPM) [10] which has shown well general-
ization ability and has also been for pose alignment in related
re-identification task [19, 20].

In this paper, instead of re-annotation the human pose, we
transfer the pose knowledge from people in generic scenarios
to pedestrians in surveillance scenarios. Different from the
work [19] which uses an extern pose estimation model, we
embed the pose estimation model into the pedestrian attribute
model for fast inference in test stage. Specifically, first we
adopt CPM model [10], which is trained on MPII and LSP
with six stages, to generate 14 prior human pose key points
as well as confidence scores. The human key points consist
head, neck, right shoulder, right elbow, right wrist, left shoul-
der, left elbow, left wrist, right hip, right knee, right ankle, left
hip, left knee, left ankle. Second, taking the generated pose
key points as coarse ground truth pose, we can train a regres-
sion network to regress pedestrian pose. To be noticed, the
pose regression network has shared parameters with region
regression network. In this paper, we adopt the smooth-L1
loss [21] with pose prior probability as the objective function
for pose regression, which is described as follows:

Lr = 1
2NK

N∑
i=1

K∑
k=1

Si,k(smoothL1(X̂i,k −Xi,k)

+smoothL1(Ŷi,k − Yi,k))
(3)

smoothL1
(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(4)

where the (Xi,k, Yi,k) are the normalized position (ranging in
[-1, 1]) of k-th key point of i-th sample. Si,k is the confidence
score of k-th key point of i-th sample generated from original
CPM model. Here, we use the confidence scores as the weight
in the pose regression model, which partially makes the model
to be robust to the noisy of extracted pseudo ground truth.

Adaptively Region Localization: Pose information is
commonly represented as a set of key points, while pedes-
trian attributes typically correspond to different regions. To
transform the key points into informative regions, we propose
to regress a bounding box for each key point. Here, we use
Spatial Transformer Networks (STN) [22] for region extrac-
tion. The STN has shown superior ability in modeling the
variance of scale and pose in different tasks, which is suitable
for adaptively region localization. There are two components
in STN, i.e. spatial localization network for affine parameters
regression and grid generator to sample the input image using
an image interpolation kernel. In our work, spatial localiza-
tion network is shown as “region regression” in Fig. 2, which
outputs six parameters for each key point from R1 to R14.
With the affine parameters θ, the grid generator can produce
the position mapping as follows:(

xsi
ysi

)
=

[
θ11 θ12 θ13
θ21 θ22 θ23

]xtiyti
1

 (5)

where the (xti, y
t
i) are the target coordinates of regular grid in

the output feature map and the (xsi , y
s
i ) are the source coordi-

nates in the input feature map that define the sample points.
Based on the position mapping output of grid generator, the
STN interpolates interesting region based on bilinear kernel.
For more details about STN, please see [22]. To be noticed,
for each key point, the normalized position (Xi,k, Yi,k) is ex-
actly the same to the normalized bias (θ13, θ23) of region k of
i-th image, and we use two symbols for easy to present.

Region-based Features Ensemble: To integrate differ-
ent regions for high-level tasks, for each key point related
region, an independent neural network is used for feature
learning. Specially, we use two fully connected layer with
256-dimension embedding to learn features of each region,
thus the final region-based representation is 3,584-dimension
(256×14). Based on the ensemble feature representation from
14 regions, we use a fully connected layer with L outputs as
the classifiers to classify all the L attributes. The same objec-
tive function as the Main Net is used to optimize the region-
based attribute recognition, which is denoted as Lp.



3.3. Optimization and Inference

The final optimization objective is denoted as follows:

L = λ1Lm + λ2Lp + λ3Lr (6)

where the λ1, λ2, λ3 represent the loss weights of Main Net,
PGDM and pose regression, respectively. The network is
trained in three stages. First, we initialize the main network
with pretrained weights on ILSVRC 2012 datasets and train
the main network with λ1 = 1 and λ2 = λ3 = 0. Second, we
train the PGDM with λ1 = 0, λ2 = 1 and λ3 = 10, and the
main network is freezed. Third, we train the overall network
with λ1 = 10, λ2 = 1 and λ3 = 1. To be noticed, the learning
rate of main network and region regression network are 1/10
of the region feature learning. In the inference stage, we fuse
the scores of Main Net and PGDM as the final results.

Our model is implemented based on Caffe [23]. As the
dataset can be quite large, we use a stochastic approximation
of the objective function. The training data is randomly divid-
ed into mini-batches with a batch size of 64. We start with a
initial learning rate of η = 1×10−3 and gradually decrease it
after each 2×104 iterations. Specially, for the third stage, the
base learning rate is η = 1 × 10−4. We use a momentum of
µ = 0.9 and weight decay γ = 5 × 10−3. We use the model
at 5× 104 iterations for testing. For image preprocessing, the
channel-based mean subtraction and random horizonal mirror
are used to prevent overfitting.

4. EXPERIMENTS

4.1. Datasets

We evaluate the proposed method on current three large-scale
pedestrian attribute datasets, including PETA [12], RAP [24]
and PA-100K [7].

PETA contains 19,000 pedestrian images which are col-
lected from existing person re-identification datasets. It is la-
beled with 61 binary attributes and 4 multi-class attributes.
As previous work [12], 35 attributes are selected for evalu-
ation due to the unbalanced attribute distribution. We adopt
the five times random partitions provided by the work [6] for
a fair comparison, including 9,500 samples for training, 1,900
samples for evaluation, and 7,600 samples for testing.

RAP contains 41,585 images which are collected from an
indoor camera network. It contains 72 fine-grained attributes
as well as view angles, occlusion patterns and coarse pedes-
trian parts. As the work [24], we adopt the five random data
partitions for a fair comparison. There are 33,268 images for
training and 8,317 images for testing in each partition.

PA-100K contains 100,000 images from 598 outdoor
scenes. It has 26 common attributes, including global at-
tributes, such as gender, and object-level attributes, such as
backpack. Here, we use the public dataset partition provided
by the work [7], which include 80,000 images for training,
10,000 for validation and 10,000 for testing, for evaluation.

Evaluation: We adopt two kinds of metrics for a fair
comparison. The first one is the label-based metric, i.e. mean
accuracy (mA). It first computes each attribute’s accuracy,
which is the mean recognition rate of positive and negative
samples, then makes an average over all the attributes. The
second is the instance-based metric, e.g. accuracy, recall rate,
precision and F1 score. The instance-based metric may be
more suitable for person retrieval in real applications, which
evaluates the results of multiple concurrent attributes on each
sample. The metrics are the same as the work [24].

4.2. Experimental results

We compare the proposed method with current state-of-the-
art methods on PETA, RAP and PA-100K. In summary, these
methods are grouped into two categories. The first one is two-
stage based methods, e.g. extracting hand-crafted features
(such as ELF) or deep features (FC6 from CaffeNet [23]), and
then learning SVM classifier for each attribute. The second
one is end-to-end deep learning based methods, which learn
feature representation and classifiers jointly. It includes AC-
N [13], Deep Multi-attribute Recognition (DeepMAR [6]),
Flexible Spatial Pyramid Pooling (FSPP [14]), Contextual
CNN-RNN (CTX [25]), Semantic Regularisation (SR [26]),
Joint Recurrent Learning of context and correlation (JRL [8]),
and Hydra-Plus (HP-Net [7]).

Methods
label-based instance-based

mA Accuracy Precision Recall F1

MRFr2 [12] 75.6 - - - -
ELF+SVM [24] 75.21 43.68 49.45 74.24 59.36
FC7+SVM [24] 72.28 31.72 35.75 71.78 47.73
FC6+SVM [24] 73.32 33.37 37.57 73.23 49.66
ACN [13] 81.15 73.66 84.06 81.26 82.64
DeepMAR [6] 82.89 75.07 83.68 83.14 83.41
FSPP [14] 81.67 75.72 84.84 83.10 83.96
CTX [25] 80.13 - 79.68 80.24 79.68
SR [26] 82.83 - 82.54 82.76 82.65
JRL [8] 85.67 - 86.03 85.34 85.42
HP-Net [7] 81.77 76.13 84.92 83.24 84.07

Main Net 82.78 76.87 85.30 84.22 84.76
PGDM 82.27 76.57 85.29 84.09 84.69
Fusion 82.97 78.08 86.86 84.68 85.76

Table 1. Experimental results on PETA. In each column, the
1st and 2nd best results (%) are indicated in bold.

PETA: As shown in Table 1, compared with GoogLeNet
based methods, e.g. FSPP, HP-Net, and VGG based methods,
e.g. CTX, SR, our fusion method which is based on shallow-
er network CaffeNet, has achieved better results on instance-
based evaluation. According to the lable-based metric, the
JRL has achieved the highest mA score, where 10 variant
models based on CaffeNet are combined for a superior per-
formance. Our fusion model achieves the second best perfor-
mance with the mA score. However, the proposed method
still has 0.34% improvement on F1. Compared with the sin-
gle model result of JRL (82.13% [8]), we could still obtain
0.86% improvements than JRL on mA.

RAP: As shown in Table 2, we find that the proposed
method doesn’t achieve better results than existing state-of-



the-art methods, e.g. FSPP and HP-Net, and only obtains
comparable results on Accuracy and Precision. We think the
main reason may be the large number of occlusion images
in RAP (32.3%) as the dataset are collected in indoor scenes.
Due to the occlusions of person body, some wrong estimation-
s of key points may decrease the robustness of region-based
features. Moreover, the representation ability of CaffeNet is
not as well as GoogLeNet to handle the complex variation.
So the FSPP and HP-Net can achieve better results on RAP.

Methods
label-based instance-based

mA Accuracy Precision Recall F1

ELF+SVM [24] 69.94 29.29 32.84 71.18 44.95
FC7+SVM [24] 72.28 31.72 35.75 71.78 47.73
FC6+SVM [24] 73.32 33.37 37.57 73.23 49.66
ACN [13] 69.66 62.61 80.12 72.26 75.98
DeepMAR [6] 73.79 62.02 74.92 76.21 75.56
FSPP [14] 79.64 60.25 69.10 80.16 74.21
CTX [25] 70.13 - 71.03 71.20 70.23
SR [26] 74.21 - 75.11 76.52 75.83
JRL [8] 77.81 - 78.11 78.98 78.58
HP-Net [7] 76.12 65.39 77.33 78.79 78.05
Main Net 73.77 62.59 76.76 74.77 75.75
PGDM 74.24 62.22 75.75 75.56 75.66
Fusion 74.31 64.57 78.86 75.90 77.35

Table 2. Experimental results on RAP. In each column, the
1st and 2nd best results (%) are indicated in bold.

PA-100K: As shown in Table 3, compared with the HP-
Net which is based on GoogLeNet with Batch Normaliza-
tion [27], the proposed CaffeNet based method has obtained
better performance on both label-based and instance-based
metrics. Note that, in PA-100K, the multiple image samples
belonging to the same person will not appear in both train and
test sets at the same time, which is more close to real scenar-
ios and much challenging.

Methods
label-based instance-based

mA Accuracy Precision Recall F1

DeepMAR [6] 72.70 70.39 82.24 80.42 81.32
M-Net [7] 72.30 70.44 81.70 81.05 81.38
HP-Net [7] 74.21 72.19 82.97 82.09 82.53
Main Net 73.92 71.26 82.98 80.93 81.94
PGDM 75.01 70.67 80.91 82.34 81.64
Fusion 74.95 73.08 84.36 82.24 83.29

Table 3. Experimental results on PA-100K. In each column,
the 1st and 2nd best results (%) are indicated in bold.

Totally, as we can see from the results on three datasets,
the proposed PGDM can obtain complementary representa-
tions to the Main Net. The fusion of Main Net and PGDM
can substantively improve the final prediction results.

4.3. Ablation Study

To explore what’s the difference learned between the Main
Net and PGDM, we make a statistic on the attribute cate-
gories in terms of recognition results. We select partial at-
tributes’ recognition results where PGDM has obtained better
results than Main Net, and the results are shown in Table 4.
It is obvious that after utilizing the human semantic structure
knowledge, the PGDM can recognize some attributes which

correspond with human key points better. We also visual-
ize the discovered regions corresponding to each key point in
Fig. 3, where the configurations of the regions can be changed
adaptively according to the pose variations of pedestrian.

Attribute Galsses HandBag HoldObject UpperLogo LowerStripe
Main Net 72.67 67.08 49.90 74.92 71.99
PGDM 74.48 68.37 52.26 77.69 79.82

Table 4. Partial attribute recognition result on PA-100K.

head neck Rsho Relb Rwri Lsho Lelb

Lwri Rhip Rkne Rank Lhip Lkne Lank

Fig. 3. Visualization of the learned region for each key point.
Full name of pose points are described in Section 3.2.

4.4. Attribute based Person Retrieval

As an core application of pedestrian attribute recognition,
pedestrian retrieval with multi-attribute query has been tested
in this work. Based on the proposed model, we make some
visualization about the attribute-driven pedestrian retrieval on
PA-100K test set. We use the product of multiple query at-
tributes’ predicted probabilities as the final similarity between
the image and the query attributes. The experimental results
are shown in Fig. 4. We find that even with complex multiple
query with 4 attribute categories, the retrieval precisions of
some query conditions are still very high in top ranks. More-
over, some images from the same person are discovered in the
top ranks, which shows the potential of attribute recognition
to assist person re-identification task.

5. CONCLUSION

In this paper, we have introduced the pedestrian structure
knowledge into pedestrian attribute recognition task and pro-
posed a pose guided deep model to improve attribute recog-
nition. Experimental results have shown that the proposed
PGDM can produce complementary results to global body-
based Main Net, and the fusion of Main Net and PGDM can
produce better results. In the future, we will explore more effi-
cient strategies to utilize the human semantic structure knowl-
edge to assist pedestrian attribute recognition.
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